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Introduction

I Gradient Descent (GD) is stable but slow in terms of computing
since it requires full-batch gradient.

I Stochastic Gradient Descent (SGD) is fast in terms of computing
but slow in terms of convergence since it explores more region than
needed due to the incessant noise.

I Johnson and Zhang used the [1] Variance Reduction (VR) method
to speed up SGD by controlling the noise by mini-batch gradient.

I Can the idea of variance reduction be applied to more general
optimization algorithms?
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SVRG Algorithm

Key Idea: Use the large(full)-batch gradient gt and the snapshot xt to
reduce the variance of mini-batch gradients.

Algorithm 1 Variance Reduction Algorithm

1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch sizes
{Bt}Tt=1, mini-batch sizes {bt}Tt=1

2: for t = 1 to T do
3: Randomly sample a batch It with size Bt

4: gt = ∇fIt (xt), y t
1 = xt

5: for k = 1 to K do
6: Randomly sample a batch Ĩt of size bt
7: v t

k = ∇fĨt (y
t
k)−∇fĨt (y

t
1) + gt

8: y t
k+1 = y t

k − αtv
t
k

9: end for
10: xt+1 = y t

K+1

11: end for
12: Return xt∗ = xT+1
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SMD for Non-smooth Optimization

Algorithm 2 Adaptive Stochastic Mirror Descent (SMD) Algorithm

1: Input: Number of stages T , initial x1, batch size b, step sizes {αt}Tt=1

2: for t = 1 to T do
3: Randomly sample a batch It with size b
4: gt = ∇fIt (xt)
5: xt+1 = argminx{αt〈gt , x〉+ αth(x) + Bψt (x , xt)}
6: end for
7: Return Uniformly sample t∗ from {t}Tt=1 and ouput xt∗

I Bregman divergence: Bψt (x , y) = ψt(x)− ψt(y)− 〈∇ψt(y), x − y〉

I AdaGrad: let St =
∑t

i=1 diag(g 2
i ) + m , Ht = S

1/2
t , ψt(x) = 1

2
〈x ,Htx〉.
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Theoretical Results

Let us consider a Non-convex Non-smooth Optimization Problem:

min
x∈Rd

F (x) + h(x) (1)

where h(x) is a convex function that can be non-smooth, and
F (x) = 1

n

∑n
i=1 fi (x) with each fi (x) being a non-convex, L-smooth

function.
‖∇fi (x)−∇fi (y)‖ ≤ L‖x − y‖, ∀i . (2)

Their stochastic gradients are unbiased with bounded variance σ2, i.e.,
sample j ∈ {1, 2, · · · , n} uniformly

E[∇fj(x)] = ∇F (x), E‖∇fj(x)−∇F (x)‖22 ≤ σ2. (3)
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Theoretical Results (cont.)

(Additional Assumption) The proximal functions ψt(x) are all m-strongly
convex with respect to ‖ · ‖2, i.e.,

ψt(y) ≥ ψt(x) + 〈∇ψt(x), y − x〉+
m

2
‖y − x‖22,∀t > 0

E.g.,

1. ψt(x) = φt(x) + c
2‖x‖

2
2, c > 0, where each φt(x) is an arbitrary

convex function

2. ψt(x) = 1
2 〈x ,Htx〉 and ∃c > 0, s.t. Ht � cI ,∀t
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Theoretical Results (cont.)

Define the generalized stochastic gradient as g̃X ,t = 1
αt

(xt − xt+1).

The corresponding Convergence Criterion E[‖gX ,t‖22] ≤ ε2 is defined with
generalized gradient gX ,t , i.e., It being full dataset in g̃X ,t .

We measure the performance of algorithms using the number of calls to a
Stochastic First-order Oracle (SFO), e.g., ∇fi (x) for some i and x ,
needed to obtain a result satisfying our Convergence Criterion.
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Adaptive SMD + VR

Algorithm 3 General Adaptive SMD with Variance Reduction Algorithm

1: Input: Number of stages T , initial x1, step sizes {αt}Tt=1, batch sizes
{Bt}Tt=1, mini-batch sizes {bt}Tt=1

2: for t = 1 to T do
3: Randomly sample a batch It with size Bt

4: gt = ∇fIt (xt); y t
1 = xt

5: for k = 1 to K do
6: Randomly pick sample Ĩt of size bt
7: v t

k = ∇fĨt (y
t
k)−∇fĨt (y

t
1) + gt

8: y t
k+1 = argminy{αt〈v t

k , y〉+ αth(y) + Bψtk
(y , y t

k)}
9: end for

10: xt+1 = y t
K+1

11: end for
12: Return (Smooth case) Uniformly sample t∗ from {t}Tt=1 and output

xt∗ ; (P-L case) xt∗ = xT+1
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Theoretical Performance Comparison

Table 1: Performance Comparison Between Different Algorithms

Algorithms SFO computations

GD O(n/ε2)
SGD O(1/ε4)
SVRG [2] O(n2/3/ε2)
SCSG [3] O(n/ε2 ∧ 1/ε10/3)

SNVRG [4] Õ(n1/2/ε2 ∧ 1/ε3)
ProxGD [5] O(n/ε2)

ProxSVRG/SAGA [6] O(n/(ε2
√
b) + n)

ProxSVRG+ [7] O(n/(ε2
√
b) ∧ (1/(ε4

√
b)) + b/ε2)

Adaptive SMD O(n/ε2 ∧ 1/ε4)

Adaptive SMD + VR O(n/(ε2
√
b) ∧ 1/(ε4

√
b) + b/ε2)

n is the total number of samples. b is the mini-batch size. ε is defined in
our convergence criterion.
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Theoretical Performance Comparison (cont.)

Corollary

With all the assumptions and parameter settings in the main theorem,
further assume that b = ε−4/3, where ε−4/3 ≤ n. Then the output of
algorithm 3 converges with gradient computations

O(
n

ε4/3
∧ 1

ε10/3
+

1

ε10/3
) (4)
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Results Inferred

When we take the proximal function to be ψtk(x) = ctk
2 ‖x‖

2
2, ctk ≥ m,

Algorithm 3 reduces to ProxSVRG+ with time-varying effective step size
αt/ctk . As long as the effective step sizes αt/ctk are upper bounded by
(m/L)/m = 1/L, Algorithm 3 still convergences with the same
complexity.

Besides, ψtk can be more complicated, such as
ψtk(x) = φtk(x) + c

2‖x‖
2
2, c > 0, where each φtk(x) is an arbitrary convex

function, or ψtk(x) = 1
2 〈x ,Htkx〉 as in adaptive algorithms.
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Results Inferred (cont.)

Another interesting result observed in our theorem is that when m is
small, we require relatively larger batch sizes Bt to guarantee the fast
convergence. This claim is supported by our experiments with adaptive
algorithms.
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Experimental Performance Comparison

AdaGrad and RMSProp
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(a) CIFAR-10 Training Loss.
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(b) CIFAR-10 Testing Acc.

Figure 1: Training Loss and Testing Acc on CIFAR-10. Variance reduction does
make the convergence of AdaGrad and RMSProp faster.
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Experimental Performance Comparison (cont.)
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(a) ProxSVRG+
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(b) VR-AdaGrad
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Figure 2: We used the notation of batch size ratio r = Bt/bt . Note that
AdaGrad and RMSProp need a much larger batch size ratio to become faster
than the original algorithm. However, ProxSVRG+ works with r = 4
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Future Directions

1. Can we combine the analysis with the tricks in SNVRG or SPIDER
to further fasten the convergence?

2. Can the specific VR-RMSProp and VR-AdaGrad algorithms converge
faster than ProxSVRG+?
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