OPTIMUM-STATISTICAL COLLABORATION TOWARDS EFFICIENT BLACK-BOX OPTIMIZATION
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Introduction

Background
» Black-box optimization has gained more and more attention nowa-
days because of its popularity in application [5, 4]

 Existing works are scattered, and only focus on one specific type
of local-smoothness assumption
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Algorithm and Results

* We propose the following general optimum-statistical collaboration al-
gorithm for black-box optimization with unspecified resolution and un-
certainty, and unspecified algorithm policy.

Algorithm 1 Optimum-statistical Collaboration

Input: Hierachical partition P, resolution descriptor OE;, Uncertainty quantifier SEj ;().
Step 1: Refresh the confidence at some specific time steps to update all SEj, ;(¢) in the tree.
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* We empirically compare the proposed VHCT algorithm with the existing any-
time blackbox optimization algorithms, including T-HOO (the truncated version
of HOO [2]), HCT [1], POO [3], and PCT (P00 + HCT, [6]). We use the Garland
function and the Double-sine function as the blackbox objectives.
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Definition 1. (Resolution Descriptor) Define 0E; to be the reso-

lution for each level h, which is a function that upper-bounds the
change of f around the optimum and measures the current opti-
mization error, i.e., for any global optimum a*,

is an absolute constant. Then for any H € [1, H(n)) we have the
following bound on the expected regret

H T} (n) n
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where d := d(a, C,0E,_,) is the near-optimality dimension defined
with respect to a, C, and 0E,_1, and Tj,(n) = max; T}, ;(n)

Figure 3: DoubleSine/Low-noise

Figure 4: DoubleSine/Moderate-noise

* As shown in the figures, VHCT converges much faster than any other algo-
rithms in both the low-noise setting and the moderate-noise setting.
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Vh > 0,Vx € P, f(x) > f(x*) — OE (CE)

where Py, ;- is the node on level h in the partition that contain the
global optimum x*.

Definition 2. (Uncertainty Quantifier) Define SE;, ;(t) to be the un-
certainty estimate for each node Py ; at time ¢, which is a function
that upper-bounds the current statistical error of the average pip, (%)
of the rewards obtained with high probability, i.e., the event . b1
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A = {v(hv ©)s [Bh,i(t) — f(@n,)| < SEh,i(t)} (SE) E[R,] < 2v/2nlog(4n?) + C1 Vi 'n*=+(log n)*%+ + Con*®+ log n

IS a high probability event.

Example Regret Bounds for Different ¢(h)
» Regret bound when ¢(h) = vp”

1 di+1 2dq+1

E[R,] < 2v/2nlog(4n3) + Clvgnﬁ(log n)ﬁ + Con2i+ilogn
 Regret bound when ¢(h) = 2/h




