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Introduction

Background
• Black-box optimization has gained more and more attention nowa-
days because of its popularity in application [5, 4]

• Existing works are scattered, and only focus on one specific type
of local-smoothness assumption

Contributions
In this paper, we introduce the optimum-statistical collaboration
framework with its analysis. In terms of resolution, such an analysis
uses a general local smoothness assumption. In terms of uncer-
tainty, the framework inspires us to propose a better quantifier.

Definitions
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Definition 1. (Resolution Descriptor) Define OEh to be the reso-
lution for each level h, which is a function that upper-bounds the
change of f around the optimum and measures the current opti-
mization error, i.e., for any global optimum x∗,

∀h ≥ 0, ∀x ∈ Ph,i∗h
, f(x) ≥ f(x∗) − OEh (OE)

where Ph,i∗h
is the node on level h in the partition that contain the

global optimum x∗.

Definition 2. (Uncertainty Quantifier) Define SEh,i(t) to be the un-
certainty estimate for each node Ph,i at time t, which is a function
that upper-bounds the current statistical error of the average µ̂h,i(t)
of the rewards obtained with high probability, i.e., the event

At =
{
∀(h, i), |µ̂h,i(t) − f(xh,i)| ≤ SEh,i(t)

}
(SE)

is a high probability event.

Algorithm and Results

• We propose the following general optimum-statistical collaboration al-
gorithm for black-box optimization with unspecified resolution and un-
certainty, and unspecified algorithm policy.

• A more general local smoothness (resolution descriptor) for different
functions and partitions.

∀h ≥ 0, ∀x ∈ Ph,i∗h
, f(x) ≥ f(x∗) − ϕ(h) (GLS)

where ϕ(h) is a function of the level h, e.g., ϕ(h) = νρh, 1/h

• A more efficient variance adaptive uncertainty quantifier.

SEh,i(t) ≡ c

√
2Vh,i(t) log(1/δ̃(t+))

Th,i(t)
+

3bc2 log(1/δ̃(t+))

Th,i(t)
(VHCT)

Regret Bounds

Theorem 3: General Regret Bound

uppose that under a sequence of probability events {Et}t=1,2,···, at each
time t, the designed policy to select the optimal node Pht,it in Algorithm
1 satisfies f∗ − f(xht,it) ≤ a · max{SEht,it(t), OEht

}, where a > 0
is an absolute constant. Then for any H ∈ [1,H(n)) we have the
following bound on the expected regret

E[Rn] ≤ 2aC
H∑

h=1

(OEh−1)
−d̄

∫ Th(n)

1

max
i

SEh,i(s)ds +
n∑

t=1

P(Ec
t )

+ a

H(n)∑
H+1

∑
i∈Ih(n)

∫ Th,i(n)

1

SEh,i(s)ds +
√
2n log(4n3) +

1

4n2

where d̄ := d(a,C, OEh−1) is the near-optimality dimension defined
with respect to a,C, and OEh−1, and Th(n) = maxi Th,i(n)

Example Regret Bounds for Different ϕ(h)

• Regret bound when ϕ(h) = νρh

E[Rn] ≤ 2
√
2n log(4n3) + C1V

1
d1+2

maxn
d1+1

d1+2(logn)
1

d1+2 + C2n
2d1+1

2d1+4 logn

• Regret bound when ϕ(h) = 2/h

E[Rn] ≤ 2
√

2n log(4n3) + C̄1V
1

2d2+3

max n
2d2+2

2d2+3(logn)
1

2d2+3 + C̄2n
2d2+1

2d2+3 logn

Experiments

• We empirically compare the proposed VHCT algorithm with the existing any-
time blackbox optimization algorithms, including T-HOO (the truncated version
of HOO [2]), HCT [1], POO [3], and PCT (POO + HCT, [6]). We use the Garland
function and the Double-sine function as the blackbox objectives.

Figure 1: Garland/Low-noise Figure 2: Garland/Moderate-noise

Figure 3: DoubleSine/Low-noise Figure 4: DoubleSine/Moderate-noise

• As shown in the figures, VHCT converges much faster than any other algo-
rithms in both the low-noise setting and the moderate-noise setting.
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