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Introduction

Background
• Stochastic multiarmed contextual bandits are useful models in
various application domains, such as recommendation systems,
online advertising, and personalized healthcare [1, 2, 3].

• In practice, such problems are often high-dimensional, but the un-
known parameter is typically assumed to have low-dimensional
structure, which in turns implies a succinct representation of the
final reward. [5, 6, 4]

• However, prior works are scattered and different algorithms with
different assumptions are proposed for these problems.

Examples of High Dimensional Bandit Problems

• LASSO Bandit.

• Low Rank Matrix Bandit.

• Group Sparse Matrix Bandit.

Contributions

• We present a simple and unified algorithm framework named
Explore-the-Structure-Then-Commit (ESTC) for high dimensional
stochastic bandit problems

• We provide a problem-independent regret analysis framework for
our algorithm.

• We demonstrate the usefulness of our framework by applying it to
different high dimensional bandit problems.

Notations and Definitions

In modern multiarmed contextual bandit problems, a set of contexts
{xt,ai

}K
i=1 for each arm is generated at every round t, and then the

agent chooses an action at from the K arms. The contexts are
assumed to be sampled i.i.d from a distribution PX with respect to
t, but the contexts for different arms can be correlated [3]. After the
action is selected, a reward yt = f(xt,at

, θ∗) + ϵt for the chosen
action is received.
Let a∗

t = argmaxi∈[K]f(xt,ai
, θ∗) denote the optimal action at each

round. We measure the performance of all algorithms by the expec-
tation of the regret, denoted as

E[R(T )] = E

[
T∑

t=1

f(xt,a∗
t
, θ∗) − f(xt,at

, θ∗)

]
Many algorithms designed for multiarmed bandit problems in-
volve solving an online optimization problem with a loss function
Lt(θ; Xt,Yt) and a regularization norm R(θ), i.e.,

θt ∈ argminθ∈Θ

{
Lt(θ; Xt,Yt) + λtR(θ)

}
(1)

where λt is the regularization parameter chosen differently in different
algorithms and Θ is the parameter domain.

Assumptions

We use the following assumptions for the analysis of our algorithm,
which are common in the analysis of high dimensional bandits [3, 6]

Assumption 1. (Boundedness) x is normalized with respect to the
norm ∥ · ∥., i.e. ∥x∥ ≤ k1 for some constant k1 .

Assumption 2. (Lipschitzness) f(x, θ) is C1-Lipschitz over x and C2-
Lipschitz over θ with respect to ∥ · ∥. i.e.,

f(x1, θ) − f(x2, θ) ≤ C1

∥∥∥x1 − x2

∥∥∥,
f(x, θ1) − f(x, θ2) ≤ C2

∥∥∥θ1 − θ2

∥∥∥
Assumption 3. (Restricted Eigenvalue Condition) Let X denote the
matrix where each row is a context vector from an arm. The population
Gram matrix Σ = 1

K
E[XTX] satisfies that there exists some constant

α0 > 0 such that βTΣβ ≥ α0∥β∥2, for all β ∈ C.

Algorithm Framework

We propose the following Explore the Structure then Commit (ESTC)
algorithm framework for high dimensional bandit problems.

Our algorithm generalizes over the prior efforts on different high dimen-
sional bandit problems.
Advantages of the ESTC Algorithm

• it is very simple

• it does not require strong assumptions

• it can be applied to different problems

Regret Bounds

We provide a regret bound of Algorithm 1 that is independent of the
high dimensional bandit problem.

Theorem 1: Problem Independent Regret Bound

The expected cumulative regret of Algorithm 1 satisfies the bound

E[R(T )] = O

 T∑
t=T0

√
9
λ2
T0

α2
ϕ2 +

1

α
[2ZT0

(θ∗) + 4λT0
R(θ∗

M⊥)]


Given the specific high dimensional bandit problems, we obtain the
following regret bounds in different problems.

Table 1: Summary of Regret Bounds of Our ESTC Algorithm Framework in Different
High Dimensional Bandit Problems

HIGH DIMENSIONAL BANDIT PROBLEM REGRET BOUND

LASSO Bandit (sanity check) O(s1/3T 2/3
√

log(dT ))

Low-rank Matrix Bandit O(r1/3T 2/3 log((d1 + d2)T )

Group-Sparse Matrix Bandit O(s1/3
√
d2T

2/3√log d1T )

Multi-agent Matrix Bandit O(d2s
1/3T 2/3

√
log(d1T ))

Experiments

The following figures validate the correctness of our theory.

Figure 1: Low-rank Matrix Bandit R(T ) Figure 2: R(T )/Bound(T )
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