A SIMPLE UNIFIED FRAMEWORK FOR HIGH DIMENSIONAL BANDIT PROBLEMS
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Introduction

Background

« Stochastic multiarmed contextual bandits are useful models in
various application domains, such as recommendation systems,
online advertising, and personalized healthcare [1, 2, 3].

* In practice, such problems are often high-dimensional, but the un-
known parameter is typically assumed to have low-dimensional
structure, which in turns implies a succinct representation of the
final reward. [5, 6, 4]

* However, prior works are scattered and different algorithms with
different assumptions are proposed for these problems.

Examples of High Dimensional Bandit Problems
« LASSO Bandit.

« Low Rank Matrix Bandit.

« Group Sparse Matrix Bandit.

Contributions

 We present a simple and unified algorithm framework named
Explore-the-Structure-Then-Commit (ESTC) for high dimensional
stochastic bandit problems

* We provide a problem-independent regret analysis framework for
our algorithm.

* We demonstrate the usefulness of our framework by applying it to
different high dimensional bandit problems.

Notations and Definitions

In modern multiarmed contextual bandit problems, a set of contexts
{x+.q,};, for each arm is generated at every round ¢, and then the
agent chooses an action a; from the K arms. The contexts are
assumed to be sampled i.i.d from a distribution Px with respect to
t, but the contexts for different arms can be correlated [3]. After the
action is selected, a reward y; = f(xt,q,, 0*) + € for the chosen
action is received.

Let a; = argmax;q k1 f (x+,q; 0*) denote the optimal action at each
round. We measure the performance of all algorithms by the expec-
tation of the regret, denoted as

E[R(T)] =E | ) f(@ta:0%) — f(2ta,07)

Many algorithms designed for multiarmed bandit prchIems In-
volve solving an online optimization problem with a loss function
L:(0;X:, Y;) and a regularization norm R(0), i.e.,

0, € argminge@{Lt(H; X, Y:) + AtR(H)} (1)

where A; is the regularization parameter chosen differently in different
algorithms and © is the parameter domain.

We use the following assumptions for the analysis of our algorithm,
which are common in the analysis of high dimensional bandits [3, 6]

Assumption 1. (Boundedness) x is normalized with respect to the
norm || - ||., i.e. ||x|| < ky for some constant k; .

Assumption 2. (Lipschitzness) f(x, 0) is C;-Lipschitz over x and Cs-
Lipschitz over @ with respectto || - ||. i.e.,

f(wla 0) T .f(w% 0) S Cl ‘331 — L2

f(wa 91) — f(fUa 92) < |91 — 92‘

Assumption 3. (Restricted Eigenvalue Condition) Let X denote the
matrix where each row is a context vector from an arm. The population
Gram matrix 3 = %E[XTX] satisfies that there exists some constant
ap > 0 such that B1'X3 > «y|3]|?, for all 3 € C.

Algorithm Framework

We propose the following Explore the Structure then Commit (ESTC)
algorithm framework for high dimensional bandit problems.

Algorithm 1 Explore-the-Structure-Then-Commit (ESTC)

Input: A\, K € N, L,(0),R(0), f(x,8),60, To
Initialize Xq, Yo = (0, w), 0, = by
fort =1 to To do
Observe K contexts, x¢ 1, Xt 2, " ,Xt.K
Choose action a; uniformly randomly
Receive reward y; = f(x¢ ,,,0%) + €;
Xt =Xi1U {xt,at}a Ye=Y:1U{ya}
end for
Compute the estimator 0 7,:

© O N R OODMDH

9To € argminﬁe@ {LTO(Q; ng, YTo) + ATo R(G)}

10: for t = To-l-lto T do
11:  Choose action a; = argmax,f(x; ., 071,)
12: end for

Our algorithm generalizes over the prior efforts on different high dimen-
sional bandit problems.
Advantages of the ESTC Algorithm

*it Is very simple
* It does not require strong assumptions
* it can be applied to different problems

Regret Bounds

We provide a regret bound of Algorithm 1 that is independent of the
high dimensional bandit problem.

Theorem 1: Problem Independent Regret Bound

The expected cumulative regret of Algorithm 1 satisfies the bound

EIR(T)) = O [ 301/9°2g2 1 ~[225,(6°) + 4AnR (03]

t:TO o

Given the specific high dimensional bandit problems, we obtain the
following regret bounds in different problems.

Table 1: Summary of Regret Bounds of Our ESTC Algorithm Framework in Different
High Dimensional Bandit Problems

HiIGH DIMENSIONAL BANDIT PROBLEM REGRET BOUND
LASSO Bandit (sanity check) O(s1/312/3, /log(dT))

Low-rank Matrix Bandit O (r1/312/310g((dy + d2)T)
(’)(31/3\/d2T2/3\/10g diT)
O(ds'/3T2/3, /log(d,T))

Group-Sparse Matrix Bandit

Multi-agent Matrix Bandit

The following figures validate the correctness of our theory.
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Figure 1: Low-rank Matrix Bandit R(T) Figure 2: R(T')/Bound(T)
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